Dynamic topology learning with the probabilistic self-organizing graph


Abstract:

Self-organizing neural networks are usually focused on prototype learning, while the topology is held fixed during the learning process. Here a method to adapt the topology of the network so that it reflects the internal structure of the input distribution is proposed. This leads to a self-organizing graph, where each unit is a mixture component of a mixture of Gaussians (MoG). The corresponding update equations are derived from the stochastic approximation framework. This approach combines the advantages of probabilistic mixtures with those of self-organization. Experimental results are presented to show the self-organization ability of our proposal and its performance when used with multivariate datasets in classification and image segmentation tasks. © 2011 Elsevier B.V.

Año de publicación:

2011

Keywords:

  • classification
  • unsupervised learning
  • image segmentation
  • Visualization
  • Self-Organization
  • Image quantization

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación