Dynamic topology learning with the probabilistic self-organizing graph
Abstract:
Self-organizing neural networks are usually focused on prototype learning, while the topology is held fixed during the learning process. Here a method to adapt the topology of the network so that it reflects the internal structure of the input distribution is proposed. This leads to a self-organizing graph, where each unit is a mixture component of a mixture of Gaussians (MoG). The corresponding update equations are derived from the stochastic approximation framework. This approach combines the advantages of probabilistic mixtures with those of self-organization. Experimental results are presented to show the self-organization ability of our proposal and its performance when used with multivariate datasets in classification and image segmentation tasks. © 2011 Elsevier B.V.
Año de publicación:
2011
Keywords:
- classification
- unsupervised learning
- image segmentation
- Visualization
- Self-Organization
- Image quantization
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación