Dynamical Spectrum for time dependent linear systems in Banach spaces


Abstract:

This paper is primarily concerned with the Dynamical Spectrum for time dependent linear differential equations in Banach spaces. We give a characterization of the Dynamical Spectrum which is an extension of the Sacker-Sell Theorem. Also we define the Lyapunov exponents, who measure the decay rate of the solutions of a linear differential equations; we investigate the relation between the Dynamical Spectrum, the Spectral Subbundles associated with the corresponding spectral intervals and the Lyapunov exponents. These problems are treated in the unified setting of a Linear Skew-Product Semiflow. Finally we present some examples of Linear Skew-Product Semiflow arising from time dependent functional differential equations and parabolic partial differential equations. © 1994 JJIAM Publishing Committee.

Año de publicación:

1994

Keywords:

  • time dependent linear differential equations
  • Dynamical spectrum
  • Lyapunov exponents
  • Skew-product semiflow

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis

Contribuidores: