EBAPy: A Python framework for analyzing the factors that have an influence in the performance of EEG-based applications[Formula presented]


Abstract:

EBAPy is an easy-to-use Python framework intended to help in the development of EEG-based applications. It allows performing an in-depth analysis of factors that influence the performance of the system and its computational cost. These factors include recording time, decomposition level of Discrete Wavelet Transform, and classification algorithm. The ease-of-use and flexibility of the presented framework have allowed reducing the development time and evaluating new ideas in developing biometric systems using EEGs. Furthermore, different applications that classify EEG signals can use EBAPy because of the generality of its functions. These new applications will impact human–computer interaction in the near future.

Año de publicación:

2021

Keywords:

  • Recording time
  • Discrete Wavelet Transform
  • EEG-based applications

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación