EM-based identification of continuous-time ARMA Models from irregularly sampled data
Abstract:
In this paper we present a novel algorithm for identifying continuous-time autoregressive moving-average models utilizing irregularly sampled data. The proposed algorithm is based on the expectation–maximization algorithm and obtains maximum-likelihood estimates. The proposed algorithm shows a fast convergence rate, good robustness to initial values, and desirable estimation accuracy. Comparisons are made with other algorithms in the literature via numerical examples.
Año de publicación:
2017
Keywords:
- Expectation–Maximization
- Maximum-likelihood
- Continuous-time ARMA model
- Irregularly sampled data
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Inferencia estadística
Áreas temáticas:
- Probabilidades y matemática aplicada
- Física aplicada
- Métodos informáticos especiales