EM-based identification of continuous-time ARMA Models from irregularly sampled data


Abstract:

In this paper we present a novel algorithm for identifying continuous-time autoregressive moving-average models utilizing irregularly sampled data. The proposed algorithm is based on the expectation–maximization algorithm and obtains maximum-likelihood estimates. The proposed algorithm shows a fast convergence rate, good robustness to initial values, and desirable estimation accuracy. Comparisons are made with other algorithms in the literature via numerical examples.

Año de publicación:

2017

Keywords:

  • Expectation–Maximization
  • Maximum-likelihood
  • Continuous-time ARMA model
  • Irregularly sampled data

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Inferencia estadística

Áreas temáticas:

  • Probabilidades y matemática aplicada
  • Física aplicada
  • Métodos informáticos especiales