EM-based identification of static errors-in-variables systems utilizing Gaussian Mixture models


Abstract:

In this paper we address the problem of identifying a static errors-in-variables system. Our proposal is based on the Expectation-Maximization algorithm, in which we consider that the distribution of the noise-free input is approximated by a finite Gaussian mixture. This approach allows us to estimate the static system parameters, the input and output noise variances, and the Gaussian mixture parameters. We show the benefits of our proposal via numerical simulations.

Año de publicación:

2020

Keywords:

  • Maximum likelihood
  • Estimation
  • Optimization
  • Expectation-maximization
  • Errors-in-Variables
  • Gaussian Mixture

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Algoritmo
  • Inferencia estadística

Áreas temáticas:

  • Ciencias de la computación