EM-based identification of static errors-in-variables systems utilizing Gaussian Mixture models
Abstract:
In this paper we address the problem of identifying a static errors-in-variables system. Our proposal is based on the Expectation-Maximization algorithm, in which we consider that the distribution of the noise-free input is approximated by a finite Gaussian mixture. This approach allows us to estimate the static system parameters, the input and output noise variances, and the Gaussian mixture parameters. We show the benefits of our proposal via numerical simulations.
Año de publicación:
2020
Keywords:
- Maximum likelihood
- Estimation
- Optimization
- Expectation-maximization
- Errors-in-Variables
- Gaussian Mixture
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso abierto
Áreas de conocimiento:
- Algoritmo
- Inferencia estadística
Áreas temáticas de Dewey:
- Ciencias de la computación
Objetivos de Desarrollo Sostenible:
- ODS 10: Reducción de las desigualdades
- ODS 16: Paz, justicia e instituciones sólidas
- ODS 17: Alianzas para lograr los objetivos