Edge detection in ventriculograms using support vector machine classifiers and deformable models
Abstract:
In this paper a left ventricle (LV) contour detection method is described. The method works from an approximate contour defined by anatomical landmarks extracted using Support Vector Machine (SVM) classifiers. The LV contour approximation is used as an initialization step for the deformable model algorithm. An optimization method based on a gradient descend algorithm is used to obtain the optimal contour that provides a minimum energy value. Both classifier and edge detection method performances have been validated. The error is determined as the difference between the shape estimated by the algorithm and the shape traced by an expert. © Springer-Verlag Berlin Heidelberg 2007.
Año de publicación:
2007
Keywords:
- Anatomical landmarks
- edge detection
- Deformable models
- Left ventricle
- SUPPORT VECTOR MACHINES
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
- Laboratorio médico
Áreas temáticas:
- Métodos informáticos especiales