Efficient hyperparameter optimization in convolutional neural networks by learning curves pbkp_rediction
Abstract:
In this work, we present an automatic framework for hyperparameter selection in Convolutional Neural Networks. In order to achieve fast evaluation of several hyperparameter combinations, pbkp_rediction of learning curves using non-parametric regression models is applied. Considering that “trend” is the most important feature in any learning curve, our pbkp_rediction method is focused on trend detection. Results show that our forecasting method is able to catch a complete behavior of future iterations in the learning process.
Año de publicación:
2018
Keywords:
- forecasting
- Learning curves
- deep learning
- Singular spectrum analysis
- SVR
- Hyperparameter optimization
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación