Efficient hyperparameter optimization in convolutional neural networks by learning curves pbkp_rediction


Abstract:

In this work, we present an automatic framework for hyperparameter selection in Convolutional Neural Networks. In order to achieve fast evaluation of several hyperparameter combinations, pbkp_rediction of learning curves using non-parametric regression models is applied. Considering that “trend” is the most important feature in any learning curve, our pbkp_rediction method is focused on trend detection. Results show that our forecasting method is able to catch a complete behavior of future iterations in the learning process.

Año de publicación:

2018

Keywords:

  • forecasting
  • Learning curves
  • deep learning
  • Singular spectrum analysis
  • SVR
  • Hyperparameter optimization

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Algoritmo
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación