Algebraic derivation of the iterative-perturbative method as a global squeezing and displacement transformation


Abstract:

We make use of iterative Bogoliubov transformations (IBT) and employ a procedure derived by Mundarain et al. to derive an approximate analytic expression for the evolution operator of a system consisting of a quartic oscillator coupled to a time-dependent electric field. As a result, this expression resumes the whole iterative process as a global squeezing and displacement transformation in which the compression coefficients and translation parameters are obtained explicitly, thus giving a complete analytic structure to the process that supports and complements the conventional IBT and the bilinear approximation (Echave, J., et al. J Chem Phys 1990, 92, 1188), which are mainly numerical and semiclassic approaches respectively.

Año de publicación:

2003

Keywords:

  • Squeezing and displacement operators
  • Algebraic iterative-perturbative method
  • Quartic anharmonic oscillator
  • Two-photon coherent states

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Álgebra