Algorithmic efficiency of stroke gesture recognizers: A comparative analysis
Abstract:
Gesture interaction is today recognized as a natural, intuitive way to execute commands of an interactive system. For this purpose, several stroke gesture recognizers become more efficient in recognizing end-user gestures from a training set. Although the rate algorithms propose their rates of return there is a deficiency in knowing which is the most recommended algorithm for its use. In the same way, the experiments known by the most successful algorithms have been carried out under different conditions, resulting in non-comparable results. To better understand their respective algorithmic efficiency, this paper compares the recognition rate, the error rate, and the recognition time of five reference stroke gesture recognition algorithms, i.e., $1, $P, $Q, !FTL, and Penny Pincher, on three diverse gesture sets, i.e., NicIcon, HHReco, and Utopiano Alphabet, in a user-independent scenario. Similar conditions were applied to all algorithms, to be executed under the same characteristics. For the algorithms studied, the method agreed to evaluate the error rate and performance rate, as well as the execution time of each of these algorithms. A software testing environment was developed in JavaScript to perform the comparative analysis. The results of this analysis help recommending a recognizer where it turns out to be the most efficient. !FTL (NLSD) is the best recognition rate and the most efficient algorithm for the HHreco and NicIcon datasets. However, Penny Pincher was the faster algorithm for HHreco datasets. Finally, $1 obtained the best recognition rate for the Utopiano Alphabet dataset.
Año de publicación:
2020
Keywords:
- Algorithmic efficiency
- Gesture interaction
- Gesture recognition
- Stroke analysis
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Inteligencia artificial
- Ciencias de la computación
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos