Algoritmos de Deep Learning utilizando Tensor Flow para el tratamiento de datos de producción científica en la Universidad Técnica de Cotopaxi


Abstract:

La implementación de Inteligencia Artificial, Redes Neuronales y Algoritmos de Deep Learning apoyados en TensorFlow en la actualidad se encuentra en constante evolución ya que han abierto nuevas rutas para el tratamiento y análisis de grandes cantidades de datos en sistemas alojados en la web principalmente. Los algoritmos de aprendizaje profundo se encargan de entrenar y agrupar por similitud una data de entrada sin supervisión denominado aprendizaje automático, los mismos que modelan abstracciones de alto nivel utilizando principalmente datos expresados en forma matricial o tensores. La presente investigación tiene como la finalidad el ayudar el nivel de toma de decisiones no supervisados en la plataforma científica Ecuciencia, la misma que se encuentra alojado en los servidores de la Universidad Técnica de Cotopaxi. Los datos que se tomarán como referencia para los análisis introducidos en los algoritmos, será los referentes a Líneas y Sublíneas de Investigación de acuerdo a la Universidad Técnica de Cotopaxi. El impacto de la implementación de algoritmos de aprendizaje profundo apoyados en TensorFlow en el sistema Ecuciencia, será muy importante, puesto que, gracias a este análisis, la plataforma científica podrá ser capaz de dar una pbkp_redicción más acertada de las clasificaciones de Líneas y Sublíneas de investigación.

Año de publicación:

2021

Keywords:

  • Algoritmos
  • Redes Neuronales
  • Aprendizaje profundo
  • Sistemas De Información
  • TensorFlow
  • ECUCIENCIA

Fuente:

rraaerraae

Tipo de documento:

Master Thesis

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación
  • Lingüística aplicada
  • Física aplicada