$${\textsf {ACUOS}}^\mathbf {2}$$ : A High-Performance System for Modular ACU Generalization with Subtyping and Inheritance


Abstract:

Generalization in order-sorted theories with any combination of associativity (A), commutativity (C), and unity (U) algebraic axioms is finitary. However, existing tools for computing generalizers (also called “anti-unifiers”) of two typed structures in such theories do not currently scale to real size problems. This paper describes the$${\textsf {ACUOS}}^\mathbf {2}$$ system that achieves high performance when computing a complete and minimal set of least general generalizations in these theories. We discuss how it can be used to address artificial intelligence (AI) problems that are representable as order-sorted ACU generalization, e.g., generalization in lists, trees, (multi-)sets, and typical hierarchical/structural relations. Experimental results demonstrate that$${\textsf {ACUOS}}^\mathbf {2}$$ greatly outperforms the predecessor tool ACUOS by running up to five orders of magnitude faster.

Año de publicación:

2019

Keywords:

    Fuente:

    googlegoogle
    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ingeniería de software
    • Software

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad
    • Métodos informáticos especiales
    • Funcionamiento de bibliotecas y archivos