'Crop yield pbkp_rediction utilizing multimodal deep learning'


Abstract:

Precision agriculture is a vital practice for improving the production of crops. The present work is aimed to develop a multimodal deep learning model that is able to produce a pbkp_rediction map of the health of crops. The model takes multispectral images and field sensor data (humidity, temperature, soil status, etc.) as an input and creates a yield map of a crop. The utilization of multimodal data is aimed to extract hidden patterns in the status of crops and in this way obtain better results than the use of vegetation indices.

Año de publicación:

2021

Keywords:

  • IOT
  • Multimodal deep learning
  • intelligent agents
  • applied computation
  • convolutional neural networks
  • remote sensing
  • PRECISION AGRICULTURE
  • Recurrent neural networks

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencia agraria

Áreas temáticas:

  • Métodos informáticos especiales
  • Programación informática, programas, datos, seguridad
  • Producción