Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy


Abstract:

Nanoporous gold (NPG) structures were prepared on the surface of a gold microelectrode (Au-μE) by an anodization-reduction method. Cyclic voltammetry and field emission scanning electron microscopy were used to study the electrochemical properties and the morphology of the nanostructured film. Voltammetry showed an improved sensitivity for dopamine (DA) oxidation at this microelectrode when compared to a bare gold microelectrode, with a peak near 0.2 V (vs. Ag/AgCl) at a scan rate of 0.1 V s−1. This is due to the increased surface area and roughness. Square wave voltammetry shows a response that is linear in the 0.1–10 μmol L−1 DA concentration range, with a 30 nmol L-1 detection limit and a sensitivity of 1.18 mA (μmol L−1)−1 cm−2. The sensor is not interfered by ascorbic acid. The reproducibility, repeatability, long-term stability and real sample analysis (spiked urine) were assessed, and acceptable performance was achieved. The “proof-of-concept” detection of dopamine release was demonstrated by using scanning electrochemical microscopy (SECM) with the aim of future applications for single cell analysis. [Figure not available: see fulltext.].

Año de publicación:

2018

Keywords:

  • Single cell analysis
  • Square wave voltammetry
  • Anodization-reduction
  • Cyclic Voltammetry
  • Electrocatalytic activity
  • Large surface area

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Electroquímica
  • Sensor
  • Bioquímica

Áreas temáticas:

  • Química física
  • Química analítica
  • Bioquímica