Electronic Structure of Pd Multilayers on Re(0001): The Role of Charge Transfer


Abstract:

Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional theory (DFT) to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations pbkp_redict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which mainly occurs to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal/metal adlayer systems.

Año de publicación:

2015

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Física
    • Ciencia de materiales
    • Ciencia de materiales

    Áreas temáticas:

    • Química física
    • Química inorgánica
    • Física