Empirical Bayes estimation utilizing finite Gaussian Mixture Models
Abstract:
In this paper we develop an identification algorithm to obtain an estimation of the prior distribution in the classical problem of Bayesian inference. We consider the Empirical Bayes approach to obtain the prior distribution approximation by a finite Gaussian mixture. An Expectation-Maximization based algorithm is used to obtain an estimate of the Gaussian mixture parameters. Our approach shows a good approximation of the prior distribution when the number of experiments is increased. We illustrate the estimation performance of our proposal with numerical simulations.
Año de publicación:
2019
Keywords:
- Bayesian inference
- Prior distribution
- ExpectationMaximization
- Empirical Bayes
- Gaussian Mixture
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Optimización matemática
Áreas temáticas de Dewey:
- Programación informática, programas, datos, seguridad
- Probabilidades y matemática aplicada
- Tecnología (Ciencias aplicadas)
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 4: Educación de calidad