End-To-end Deep Learning for VCSEL's Nonlinear Digital Pre-Distortion


Abstract:

We propose a novel optimization method for a Neural Network based Digital Pre-Distorter (DPD), applied in Intensity Modulation-Direct Detection transmission systems leveraging Multi-Modal Fiber and Vertical-Cavity Surface-Emitting Laser. We train the DPD using End-To-end Deep Learning of the optical link, together with a Direct Learning Approach leveraging experimental measurements for modeling the transmission channel. The optimization considers VCSEL amplitude constraints, the use of an FFE at the receiver side, and the presence of a receiver non-flat Colored Gaussian Noise (CGN). We verify our optimized DPD on an experimental setup transmitting a 92 Gbps PAM-4 modulated signal. We achieve, for BER=0.01, a performance gain of more than 1 dB in terms of Optical Path Loss with respect to the best performing non-pre-distorted scenario.

Año de publicación:

2022

Keywords:

  • nonlinear equalization
  • Deep learning applications on communication systems
  • VCSEL
  • Optical PAM-4 IM-DD systems
  • Data center interconnects

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Algoritmo
  • Aprendizaje profundo
  • Óptica no lineal

Áreas temáticas:

  • Métodos informáticos especiales