Energy performance of heuristics and meta-heuristics for real-time joint resource scaling and consolidation in virtualized networked data centers


Abstract:

In this paper, we explore on a comparative basis the performance suitability of meta-heuristic, sometime denoted as random search algorithms, and greedy-type heuristics for the energy-saving joint dynamic scaling and consolidation of the network-plus-computing resources hosted by networked virtualized data centers when the target is the support of real-time streaming-type applications. For this purpose, the energy and delay performances of Tabu Search (TS), Simulated Annealing (SA) and Evolutionary Strategy (ES) meta-heuristics are tested and compared with the corresponding ones of Best-Fit Decreasing-type heuristics, in order to give insight on the resulting performance-versus-implementation complexity trade-offs. In principle, the considered meta-heuristics and heuristics are general formal approaches that can be applied to large classes of (typically, non-convex and mixed integer) optimization problems. However, specially for the meta-heuristics, a main challenge is to design them to properly address the real-time joint computing-plus-networking resource consolidation and scaling optimization problem. To this purpose, the aim of this paper is: (i) introduce a novel Virtual Machine Allocation (VMA) scheme that aims at choosing a suitable set of possible Virtual Machine placements among the (possibly, non-homogeneous) set of available servers; (ii) propose a new class of random search algorithms (RSAs) denoted as consolidation meta-heuristic, considering the VMA problem in RSAs. In particular, the design of novel variants of meta-heuristics, namely TS-RSC, SA-RSC and ES-RSC, is particularized to the resource scaling and consolidation (RSC) problem; (iii) compare the results of the obtained new RSAs class against some state-of-the-art heuristic approaches. A set of experimental results, both simulated and real-world ones, support the effectiveness of the proposed approaches against the traditional ones.

Año de publicación:

2018

Keywords:

  • Genetic Algorithms
  • TCP/IP Virtualized data centers
  • Simulated Annealing
  • Real-time streaming applications
  • Tabu search
  • ENERGY SAVING
  • Meta-heuristics optimization
  • Resource consolidation

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Computación en la nube
  • Energía
  • Energía

Áreas temáticas:

  • Ciencias de la computación
  • Ciencias sociales
  • Física aplicada