(α, β, θ, ∂, I)-continuous mappings and their decomposition
Abstract:
In this paper we introduce the concept of (α, β, θ, ∂, I)-continuous mappings and prove that if α, β are operators on the topological space (X, τ) and θ, θ*, ∂ are operators on the topological space (Y, ψ) and I a proper ideal on X, then a function f: X → Y is (α, β, θ ∧ θ*, ∂, I)-continuous if and only if it is both (α, β, θ, ∂, I) -continuous and (α, β, θ*, ∂, I)-continuous, generalizing a result of J. Tong. Additional results on (α, Int, θ, ∂, {∅})-continuous maps are given.
Año de publicación:
2004
Keywords:
- P-continuous
- Mutually dual expansions
- Expansion continuous
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis
- Álgebra
- Aritmética