(α, β, θ, ∂, I)-continuous mappings and their decomposition


Abstract:

In this paper we introduce the concept of (α, β, θ, ∂, I)-continuous mappings and prove that if α, β are operators on the topological space (X, τ) and θ, θ*, ∂ are operators on the topological space (Y, ψ) and I a proper ideal on X, then a function f: X → Y is (α, β, θ ∧ θ*, ∂, I)-continuous if and only if it is both (α, β, θ, ∂, I) -continuous and (α, β, θ*, ∂, I)-continuous, generalizing a result of J. Tong. Additional results on (α, Int, θ, ∂, {∅})-continuous maps are given.

Año de publicación:

2004

Keywords:

  • P-continuous
  • Mutually dual expansions
  • Expansion continuous

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Álgebra
  • Aritmética