Error estimates for optimal control problems of a class of quasilinear equations arising in variable viscosity fluid flow


Abstract:

We consider optimal control problems of quasilinear elliptic equations with gradient coefficients arising in variable viscosity fluid flow. The state equation is monotone and the controls are of distributed type. We prove that the control-to-state operator is twice Fréchet differentiable for this class of equations. A finite element approximation is studied and an estimate of optimal order h is obtained for the control. The result makes use of the distributed structure of the controls, together with a regularity estimate for elliptic equations with Hölder coefficients and a second order sufficient optimality condition. The paper ends with a numerical experiment, where the approximation order is computationally tested.

Año de publicación:

2016

Keywords:

  • 76A05
  • 35J62
  • 49K20
  • 65N30

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Dinámica de fluidos

Áreas temáticas:

  • Análisis
  • Otras ramas de la ingeniería