Error estimates for optimal control problems of a class of quasilinear equations arising in variable viscosity fluid flow
Abstract:
We consider optimal control problems of quasilinear elliptic equations with gradient coefficients arising in variable viscosity fluid flow. The state equation is monotone and the controls are of distributed type. We prove that the control-to-state operator is twice Fréchet differentiable for this class of equations. A finite element approximation is studied and an estimate of optimal order h is obtained for the control. The result makes use of the distributed structure of the controls, together with a regularity estimate for elliptic equations with Hölder coefficients and a second order sufficient optimality condition. The paper ends with a numerical experiment, where the approximation order is computationally tested.
Año de publicación:
2016
Keywords:
- 76A05
- 35J62
- 49K20
- 65N30
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Dinámica de fluidos
Áreas temáticas:
- Análisis
- Otras ramas de la ingeniería