An EM-based estimation algorithm for a class of systems promoting sparsity
Abstract:
In this paper we propose a Maximum a Posteriori (MAP) approach for estimating a random sparse parameter vector in the presence of nonlinearities of unknown parameters. In this Bayesian approach, the a priori probability distribution for the parameter vector is utilised as a mechanism to promote sparsity. We solve this identification problem by using a generalized Expectation Maximization algorithm in a MAP framework. © 2013 EUCA.
Año de publicación:
2013
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Algoritmo
- Algoritmo
Áreas temáticas:
- Ciencias de la computación
- Lingüística aplicada
- Física aplicada