An EM-based estimation algorithm for a class of systems promoting sparsity


Abstract:

In this paper we propose a Maximum a Posteriori (MAP) approach for estimating a random sparse parameter vector in the presence of nonlinearities of unknown parameters. In this Bayesian approach, the a priori probability distribution for the parameter vector is utilised as a mechanism to promote sparsity. We solve this identification problem by using a generalized Expectation Maximization algorithm in a MAP framework. © 2013 EUCA.

Año de publicación:

2013

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Algoritmo
    • Algoritmo

    Áreas temáticas:

    • Ciencias de la computación
    • Lingüística aplicada
    • Física aplicada