An adapted alternation approach for recommender systems


Abstract:

This paper presents an adaptation of the Alternation technique to tackle the prediction task in recommender systems. These systems are widely considered in Electronic commerce to help customers to find products they will probably like or dislike. As the SVD-based approaches, the proposed adapted Alternation technique uses all the information stored in the system to find the predictions. The main advantage of this technique with respect to the SVD-based ones is that it can deal with missing data. Furthermore, it has a smaller computational cost. Experimental results with public data sets are provided in order to show the viability of the proposed adapted Alternation approach. © 2008 IEEE.

Año de publicación:

2008

Keywords:

    Fuente:

    googlegoogle
    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Algoritmo
    • Ciencias de la computación

    Áreas temáticas de Dewey:

    • Funcionamiento de bibliotecas y archivos
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 12: Producción y consumo responsables
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA