An adapted alternation approach for recommender systems
Abstract:
This paper presents an adaptation of the Alternation technique to tackle the prediction task in recommender systems. These systems are widely considered in Electronic commerce to help customers to find products they will probably like or dislike. As the SVD-based approaches, the proposed adapted Alternation technique uses all the information stored in the system to find the predictions. The main advantage of this technique with respect to the SVD-based ones is that it can deal with missing data. Furthermore, it has a smaller computational cost. Experimental results with public data sets are provided in order to show the viability of the proposed adapted Alternation approach. © 2008 IEEE.
Año de publicación:
2008
Keywords:
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
- Ciencias de la computación
Áreas temáticas de Dewey:
- Funcionamiento de bibliotecas y archivos

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 12: Producción y consumo responsables
- ODS 8: Trabajo decente y crecimiento económico
