An anomaly detection system using a GHSOM-1


Abstract:

An anomaly detection system based on a hierarchical self-organizing neural network is presented. The proposed neural network reduces the amount of parameters that a user should define prior to the training to a single parameter. This allows the network to perform more autonomously while maintaining a good performance, which is less dependent on the user experience about the application domain. The experimental results show the behavior of the anomaly detection system when it is applied to the KDD Cup 1999 data set. © 2010 IEEE.

Año de publicación:

2010

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Algoritmo

    Áreas temáticas:

    • Métodos informáticos especiales