An application of queuing theory to sis and seis epidemic models


Abstract:

In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions. In order to achieve this we first derive new approximations to quasistation-ary distribution (QSD) of SIS (Susceptible-Infected-Susceptible) and SEIS (Susceptible-Latent-Infected-Susceptible) stochastic epidemic models. We give an expression that relates the basic reproductive number, R0 and the server utilization, p.

Año de publicación:

2010

Keywords:

  • Stochastic epidemic models
  • SIS; SEIS
  • R0; basic reproductive number
  • Queuing theory

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Modelo matemático
  • Epidemiología
  • Optimización matemática

Áreas temáticas:

  • Principios generales de matemáticas