An approach to mapping parallel programs on hypercube multiprocessors


Abstract:

In this work, we propose a heuristic algorithm based on Genetic Algorithm for the task-to-processor mapping problem in the context of local-memory multiprocessors with a hypercube interconnection topology. Hypercube multiprocessors have offered a cost effective and feasible approach to supercomputing through parallelism at the processor level by directly connecting a large number of low-cost processors with local memory which communicate by message passing instead of shared variables. We use concepts of the graph theory (task graph precedence to represent parallel programs, graph partitioning to solve the program decomposition problem, etc.) to model the problem. This problem is NP-complete which means heuristic approaches must be adopted. We develop a heuristic algorithm based on Genetic Algorithms to solve it.

Año de publicación:

1999

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Arquitectura de computadoras
    • Ciencias de la computación
    • Ciencias de la computación

    Áreas temáticas:

    • Ciencias de la computación
    • Programación informática, programas, datos, seguridad
    • Métodos informáticos especiales

    Contribuidores: