An assessment of ten-fold and Monte Carlo cross validations for time series forecasting


Abstract:

On a meta-learning process, the key is to build a reliable meta-training data set, which requires the best model for a specific sample. In the other hand, the uncertainty of expected accuracy of a particular model increases when data depend on time. Then, during meta-learning, an accurate validation of the reliability of the involved models is critical. This paper compares the applicability of two of the most used methods for validating forecasting models: ten-fold and Monte Carlo cross validations. Experimental results, using time series of the NN3 tournament, found that Monte Carlo cross validation is more stable than ten-fold cross validation for selecting the best forecasting model. © 2013 IEEE.

Año de publicación:

2013

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Análisis de datos
    • Optimización matemática

    Áreas temáticas:

    • Ciencias de la computación