An attribute binning algorithm for association rule induction


Abstract:

Binning or discretization of continuous attributes is a preprocessing task required by many data mining algorithms. This task becomes especially important in association rule mining since it has a significant influence in the quality of the induced rules. In this paper, a multivariate method for binning quantitative attributes is proposed. Data from software projects was used for validating the method. Resulting discretized data used for mining the rules lead to a comprehensible set of interesting and high confident association rules, which cover a high percentage of records in the data set.

Año de publicación:

2007

Keywords:

  • Association Rules
  • Binning
  • Discretization
  • Clustering

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Minería de datos
  • Algoritmo
  • Ciencias de la computación

Áreas temáticas:

  • Programación informática, programas, datos, seguridad