100 Gbps/λ PON downstream O- And C-band alternatives using direct-detection and linear-impairment equalization [Invited]


Abstract:

The future-generation passive optical network (PON) physical layer, targeting 100 Gbps/wavelength, will have to deal with severe optoelectronics bandwidth and chromatic dispersion limitations. In this paper, largely extending our Optical Fiber Communication Conference (OFC) 2020 invited paper, we review 100 Gbps/wavelength PON downstream alternatives over standard single-mode fiber in the O- and C-bands, analyzing three modulation formats (PAM-4, partial-response PAM-4, and PAM-8), two types of direct-detection receivers (APD- and SOA $+$+ PIN-based), and three digital reception strategies (unequalized, feed-forward equalized, and decision-feedback equalized). We evaluate by means of simulations the performance of these alternatives under different optoelectronics bandwidth and dispersion scenarios, identifying O-band feasible solutions able to reach 20 km of fiber and an optical path loss of at least 29 dB over a wide wavelength range of operation. Finally, we compare two digitally precompensated modulation schemes that are highly tolerant of chromatic dispersion, showing a possible extension to C-band operation, preserving direct-detection and linear-impairment equalization at the optical network unit side.

Año de publicación:

2021

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Telecomunicaciones
    • Telecomunicaciones
    • Ingeniería electrónica

    Áreas temáticas:

    • Física aplicada
    • Física aplicada