An investigation of the effect of migratory type corrosion inhibitor on mechanical properties of zeolite-based novel geopolymers


Abstract:

The effects of migratory type corrosion inhibitor and curing time on the thermal stability and mechanical properties of Ecuadorian natural zeolite-based geopolymers were evaluated. Geopolymer samples were prepared by alkali activation of the natural zeolite by 8 M NaOH solution and calcium hydroxide Ca(OH)2 1–3 wt%, with an activator/binder ratio of 0.6. The geopolymer samples cured for 24 h at 40 °C and then for 6 days more at room temperature showed the compressive strength values in a range of 3–5,5 MPa. Mineralogical analysis of natural zeolite obtained by XRD is as follows: Mordenite (∼67%), quartz (∼27%) and amorphous (∼6%). SEM-EDS micrographs analysis of geopolymers revealed the presence of Na and Ca which proves the incorporation of the activators, NaOH and Ca(OH)2. The compressive strength values obtained indicate that the use of alkali activation of natural zeolites is an effective method for the synthesis of geopolymers. The mechanical properties of geopolymers were slightly but not adversely affected by the addition of the migratory corrosion inhibitor, MCI-2005 NS. These results will be used in future research on geopolymer concrete with embedded reinforcing steel.

Año de publicación:

2017

Keywords:

  • Alkali activation
  • geopolymer
  • compressive strength
  • Corrosion inhibitors
  • natural zeolite

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Material compuesto
  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas:

  • Ingeniería y operaciones afines
  • Química física