An optimization-based algorithm for model selection using an approximation of Akaike's Information Criterion


Abstract:

In this paper, we consider an optimization approach for model selection using Akaike's Information Criterion (AIC) by incorporating the ℓ0-(pseudo)norm as a penalty function to the log-likelihood function. In order to reduce the numerical complexity of the optimization problem, we propose to approximate the ℓ0-(pseudo)norm by an exponential term. We focus on problems with hidden variables - i.e. where there are random variables that we cannot measure, and the Expectation-Maximization (EM) algorithm. We illustrate the benefits of our proposal via numerical simulations.

Año de publicación:

2016

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Algoritmo
    • Optimización matemática

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad