Evaluating the mindwave headset for automatic upper body motion classification


Abstract:

This paper presents preliminary results on evaluating the NeuroSky Mindwave headset for upper body motion intention classification. An artificial neural network (ANN) is trained by using a data set built for two different feature extraction methods, one based on the wavelet transform (WT) and another based on the use of spectrograms. Since there are five different types of brain waves,(α, β, γ, Δ, θ) some data aggregation procedures are proposed to reduce the dimensionality of the data set. The classification results show that it is possible to attain a 73.1% of assertion rate.

Año de publicación:

2018

Keywords:

  • MINDWAVE
  • classificator
  • ANN
  • data compression

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Cognición
  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Fisiología humana
  • Ciencias de la computación
  • Otras ramas de la ingeniería