Analytic representation of bayes labeling and bayes clustering operators for random labeled point processes


Abstract:

Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously pbkp_redictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.

Año de publicación:

2015

Keywords:

  • small samples
  • Bayesian estimation
  • pattern recognition
  • Clustering
  • Bayes classification

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Inferencia bayesiana
  • Optimización matemática

Áreas temáticas:

  • Principios generales de matemáticas
  • Análisis numérico
  • Sistemas