Evolutionary many-objective optimization using dynamic ϵ-Hoods and Chebyshev function


Abstract:

Two preferred approaches to implement selection in many-objective optimization are based on scalarizing functions and ϵ-dominance. This work introduces a Chebyshev Achievement Function in the parent selection step of the Adaptive ϵ-Sampling ϵ-Hood many-objective optimizer and studies the combined effect of the exploitative power offered by the scalarizing function with the highly dynamic and explorative features of the many-objective optimizer. Two parent selection methods are investigated to exploit solutions closer to the ideal point of the dynamically changing neighborhoods created by the many-objective optimizer. These parent selection methods are compared with the random selection within the neighborhood method used by the original many-objective optimizer. The algorithms are tested using many-objective problems with unimodal and multimodal fitness functions, fixing the number of generations with various population sizes and fixing the number of evaluations using various combinations of number of generations and population size.

Año de publicación:

2015

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Optimización matemática
    • Optimización matemática

    Áreas temáticas de Dewey:

    • Métodos informáticos especiales
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA