Evolving cooperation of simple agents for the control of an autonomous robot


Abstract:

A distributed and scalable architecture for the control of an autonomous robot is presented in this work. In our proposal a whole robotic agent is divided into sub-agents. Every sub-agent is coded into a very simple neural network, and controls one sensor/actuator element of the robot. Sub-agents learn by evolution how to handle their sensor/actuator and how to cooperate with the rest of sub-agents. Emergence of behaviors happens when the co-evolution of several sub-agents embodied into the single robotic agent is produced. It will be demonstrated that the proposed distributed controller learns faster and better than a neuro-evolved central controller.

Año de publicación:

2004

Keywords:

  • EVOLUTION
  • Neural networks
  • Distributed controller
  • Autonomous robots
  • Agents

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Robótica
  • Algoritmo

Áreas temáticas:

  • Ciencias de la computación
  • Procesos mentales conscientes e inteligencia
  • Otras ramas de la ingeniería