Exhaust gas prediction in otto engines using PME and RNA
Abstract:
This document deals with the prediction of exhaust gases from a provoked ignition engine (MEP), through its mean effective pressure (PME), through the use of artificial neural networks (ANN). The methodology applied consists of acquiring signals from the PME, load, revolutions per minute (rpm) and the manifold absolute pressure sensor (MAP) of the engine of the armfield dynamometric bench cm11, of which it obtains a database and that through statistical analysis it is determined that to predict polluting emissions it is necessary to apply cascade RNA, that is, first the engine load is predicted and therefore the exhaust gases, with which a rating error less than 10e-4. For the validation of this project an experimental analysis is carried out, which consists in acquiring new engine data to check the percentage of error between the values simulated by the RNAs and the actual values, where there is an error of less than 2% and 3% for the prediction of the load and the exhaust gases respectively.
Año de publicación:
2020
Keywords:
- Load percentage
- Exhaust gases
- Dynamometer bench
- pbkp_rediction
- PME
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema no lineal
- Aprendizaje automático
Áreas temáticas de Dewey:
- Física aplicada
- Otras ramas de la ingeniería
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 13: Acción por el clima
- ODS 7: Energía asequible y no contaminante