Existence and roughness of the exponential dichotomy for skew-product semiflow in banach spaces


Abstract:

In this paper we introduce a concept of exponential dichotomy for skew-product semiflow in infinite dimensional Banach spaces which is an extension of the classic concept for evolution operators. This concept is used to study the roughness property of the skew-product semiflow. Also, we introduce the concept of discrete skew-product and give a necessary and sufficient condition for this discrete skew-product to have a Discrete Dichotomy. After that, we give necessary and sufficient conditions for the existence of exponential dichotomy for skew-product semiflow. Moreover we prove that the exponential dichotomy for skew-product semiflow is not destroyed by small perturbation. Finally, we apply these results to parabolic partial differential equations and functional differential equations. © 1995 by Academic Press, Inc.

Año de publicación:

1995

Keywords:

    Fuente:

    googlegoogle
    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Espacio de Banach
    • Optimización matemática

    Áreas temáticas:

    • Análisis
    • Análisis numérico

    Contribuidores: