Expanding the applicability of an eighth-order method in banach space under weak conditions


Abstract:

We present a local convergence analysis for an eighth-order convergent method in order to approximate a locally unique solution of nonlinear equation in a Banach space setting. In contrast to the earlier studies using hypotheses up to the seventh Fréchet- derivative, we only use hypotheses on the first-order Fréchet-derivative and Lipschitz constants. This way, we not only expand the applicability of these methods but also proposed the computable radius of convergence of these methods. Finally, a variety of concrete numerical examples demonstrate that our results even apply to solve those nonlinear equations where earlier studies cannot apply.

Año de publicación:

2019

Keywords:

  • Banach space
  • Order of convergence
  • Lipschitz constant
  • Iterative method
  • local convergence

Fuente:

scopusscopus

Tipo de documento:

Book Part

Estado:

Acceso restringido

Áreas de conocimiento:

  • Espacio de Banach
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Matemáticas