Expanding the applicability of an eighth-order method in banach space under weak conditions
Abstract:
We present a local convergence analysis for an eighth-order convergent method in order to approximate a locally unique solution of nonlinear equation in a Banach space setting. In contrast to the earlier studies using hypotheses up to the seventh Fréchet- derivative, we only use hypotheses on the first-order Fréchet-derivative and Lipschitz constants. This way, we not only expand the applicability of these methods but also proposed the computable radius of convergence of these methods. Finally, a variety of concrete numerical examples demonstrate that our results even apply to solve those nonlinear equations where earlier studies cannot apply.
Año de publicación:
2019
Keywords:
- Banach space
- Order of convergence
- Lipschitz constant
- Iterative method
- local convergence
Fuente:
scopus
Tipo de documento:
Book Part
Estado:
Acceso restringido
Áreas de conocimiento:
- Espacio de Banach
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Matemáticas