Expectation-Maximization Learning for Wireless Channel Modeling of Reconfigurable Intelligent Surfaces


Abstract:

Channel modeling is a critical issue when designing or evaluating the performance of reconfigurable intelligent surface (RIS)-assisted communications. Inspired by the promising potential of learning-based methods for characterizing the radio environment, we present a general approach to model the RIS end-to-end equivalent channel using the unsupervised expectation-maximization (EM) learning algorithm. We show that an EM-based approximation through a simple mixture of two Nakagami- {m} distributions suffices to accurately approximate the equivalent channel, while allowing for the incorporation of crucial aspects into RIS's channel modeling such as beamforming, spatial channel correlation, phase-shift errors, arbitrary fading conditions, and coexistence of direct and RIS channels. Based on the proposed analytical framework, we evaluate the outage probability under different settings of RIS's channel features and confirm the superiority of this approach compared to recent results in the literature.

Año de publicación:

2021

Keywords:

  • reconfigurable intelligent surface
  • Channel modeling
  • Expectation-maximization
  • outage probability
  • spatial correlation

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Red inalámbrica

Áreas temáticas de Dewey:

  • Ciencias de la computación
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 11: Ciudades y comunidades sostenibles
  • ODS 17: Alianzas para lograr los objetivos
Procesado con IAProcesado con IA