2D semantic segmentation of the prostate gland in magnetic resonance images using convolutional neural networks


Abstract:

Convolutional Neural Networks is one of the most commonly used methods for automatic prostate segmentation. However, few studies focus on the segmentation of the two main zones of the prostate: the central gland and the peripheral zone. This work proposes and evaluates two models for 2D semantic segmentation of these two zones of the prostate. The first model (Model-A) uses an encoder-decoder architecture based on the global U-net and the local U-net architectures. The global U-net segments the whole prostate, whereas the local U-net segments the central gland. The peripheral zone is obtained by subtracting the central gland from the whole prostate. On the other hand, the second model (Model-B) uses an encoder-classifier architecture based on the VGG16 network. Model-B performs segmentation by classifying each pixel of a Magnetic Resonance Image (MRI) into three categories: background, central gland, and peripheral zone. Both models are tested using MRIs from the dataset NCI-ISBI 2013 Challenge. The experimental results show a superior segmentation performance for Model-A, encoder-decoder architecture, (DSC = 96.79% ± 0.15% and IoU = 93.79% ± 0.29%) compared to Model-B, encoder-classifier architecture, (DSC = 92.50%± 1.19% and IoU = 86.13% ±2.02%).

Año de publicación:

2021

Keywords:

  • Central Gland
  • NCI-ISBI 2013
  • MRIs
  • Encoder-Decoder
  • VGG16
  • Encoder-Classifier
  • Peripheral Zone
  • Prostate Segmentation
  • U-net
  • convolutional neural networks

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Ciencias de la computación
  • Laboratorio médico

Áreas temáticas:

  • Física aplicada
  • Métodos informáticos especiales
  • Ciencias de la computación