Experimental and theoretical study of the thermal decomposition of ethyl acetate during fast pyrolysis
Abstract:
The thermal decomposition of ethyl acetate was experimentally studied in a newly designed fast pyrolysis set-up. The results were compared to theoretical calculations and literature values in order to proof the experimental concept. The reaction was carried out in a free fall tubular reactor with a residence time of 0.15 s. The identification and quantification of products stream composition was performed online using a GC-TCD/FID. First, an overview of the reaction rate at feed volumes of 0.25, 0.50 and 0.75 mL was obtained at reaction temperature between 400 to 600 °C in intervals of 50 °C. As a result mass transfer limitation for feeds larger than 0.5 mL were identified. For the second approach, a constant feed volume of 0.25 mL and temperatures between 420 to 550 °C were investigated. Using the experimental results, a global kinetic model is proposed for the thermal decomposition of ethyl acetate into ethylene and acetic acid through a first order unimolecular reaction. Also, theoretical calculations were performed at ωB97XD/6-311++G(d,p) level. A concerted mechanism through a six-membered transition state was identified in the reaction path. The theoretical and experimental activation energy values lie within the literature values between 193 and 213 kJ/mol.
Año de publicación:
2020
Keywords:
- Thermal decomposition
- Unimolecular decomposition
- pyrolysis
- Ethyl acetate
- Arrhenius equation
- activation energy
Fuente:

Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Ingeniería química
- Química física
Áreas temáticas:
- Ingeniería química
- Química y ciencias afines
- Física