Explainable Recommender Systems: From Theory to Practice


Abstract:

Recommender systems support users’ decision-making, and they are key for helping them discover resources or relevant items in an information-overloaded environment such as the web. Like other Artificial Intelligence-based applications, these systems suffer from the problem of lack of interpretability and explanation of their results. Enriching or augmenting the system output with explanations increases the users’ trustworthiness and reliability regarding the system decisions. Therefore, it is important not only to measure the performance of automatic models but also to measure the explainability of the system. In this paper, we present research related to explainable recommender systems and a demonstrative case. To illustrate how explainable recommendations can be generated, we present two scenarios based on the Tripadvisor dataset.

Año de publicación:

2023

Keywords:

  • Generation of explanations
  • Tripadvisor dataset
  • Recommendation models
  • Explainable recommendations

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Inteligencia artificial
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Funcionamiento de bibliotecas y archivos
  • Producción
  • Ciencias de la computación