Explainable Recommender Systems: From Theory to Practice
Abstract:
Recommender systems support users’ decision-making, and they are key for helping them discover resources or relevant items in an information-overloaded environment such as the web. Like other Artificial Intelligence-based applications, these systems suffer from the problem of lack of interpretability and explanation of their results. Enriching or augmenting the system output with explanations increases the users’ trustworthiness and reliability regarding the system decisions. Therefore, it is important not only to measure the performance of automatic models but also to measure the explainability of the system. In this paper, we present research related to explainable recommender systems and a demonstrative case. To illustrate how explainable recommendations can be generated, we present two scenarios based on the Tripadvisor dataset.
Año de publicación:
2023
Keywords:
- Generation of explanations
- Tripadvisor dataset
- Recommendation models
- Explainable recommendations
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Inteligencia artificial
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Funcionamiento de bibliotecas y archivos
- Producción
- Ciencias de la computación