Exploiting temporal dimension in tensor-based link prediction
Abstract:
In the recent years, there is a significant interest in a link prediction - an important task for graph-based data structures. Although there exist many approaches based on the graph theory and factorizations, there is still lack of methods that can work with multiple types of links and temporal information. The creation time of a link is an important aspect: it reflects age and credibility of the information. In this paper, we introduce a method that predicts missing links in RDF datasets. We model multiple relations of RDF as a tensor that incorporates the creation time of links as a key component too. We evaluate the proposed approach on real world datasets: an RDF representation of the ProgrammableWeb directory and a subset of the DBpedia focused on movies. The results show that the proposed method outperforms other link prediction approaches.
Año de publicación:
2016
Keywords:
- Link pbkp_rediction
- Temporal information
- Tensor factorization
- Rdf
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
Áreas temáticas de Dewey:
- Funcionamiento de bibliotecas y archivos

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 8: Trabajo decente y crecimiento económico
