Extending the applicability of Newton's method for k-Fréchet differentiable operators in Banach spaces


Abstract:

We extend the applicability of Newton's method for k-Fréchet differentiable operators in a Banach space setting by using a more flexible way of computing upper bounds on the inverses of the operators involved. In particular, we improve and extend the recent works by Ezquerro et al. (2012, 2013) [13,15]. Moreover, we illustrate our study with some numerical examples involving Hammerstein integral equations. © 2014 Elsevier Inc. All rights reserved.

Año de publicación:

2014

Keywords:

  • The Newton-Kantorovich theorem
  • Newton's method
  • A priori error estimates
  • Majorizing sequence
  • semilocal convergence
  • Hammerstein integral equation

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Espacio de Banach
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Álgebra
  • Matemáticas