Extending the applicability of Newton’s method by improving a local result due to Dennis and Schnabel


Abstract:

We present a tighter local convergence result for Newton’s method under generalized conditions of Kantorovich type than the one given by Dennis and Schnabel (Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia, 1996) and by Ezquerro et al. (J Comput Appl Math 236:2246–2258, 2012) by using more precise majorizing functions and sequences. These improvements are obtained under the same computational cost as in the earlier studies. Numerical examples are also provided to show that the new convergence radii are larger and the new error bounds are tighter than the older ones.

Año de publicación:

2014

Keywords:

  • Order convergence
  • Newton’s method
  • local convergence

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis numérico
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación