Extension of Fermat’s last theorem in Minkowski natural spaces


Abstract:

Minkowski natural (N + 1)-dimensional spaces constitute the framework where the extension of Fermat’s last theorem is discussed. Based on empirical experience obtained via computational results, some hints about the extension of Fermat’s theorem from (2 + 1)-dimensional Minkowski spaces to (N + 1)-dimensional ones. Previous experience permits to conjecture that the theorem can be extended in (3 + 1) spaces, new results allow to do the same in (4 + 1) spaces, with an anomaly present here but difficult to find in higher dimensions. In (N + 1) dimensions with N> 4 there appears an increased difficulty to find Fermat vectors, there is discussed a possible source of such an obstacle, separately of the combinatorial explosion associated to the generation of natural vectors of high dimension.

Año de publicación:

2021

Keywords:

  • (N + 1)-dimensional natural Minkowski spaces
  • Extension of Fermat’s last theorem
  • Conjectures on extended Fermat’s theorem
  • Fermat hypersurfaces

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática

Áreas temáticas de Dewey:

  • Álgebra
  • Geometría
  • Principios generales de matemáticas
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 4: Educación de calidad
Procesado con IAProcesado con IA