FRvarPSO: A method for obtaining fuzzy classification rules using optimization Techniques


Abstract:

FRvarPSO is a new method for obtaining classification rules, which operates on nominal and/or fuzzy attributes. It combines LVQ, which is a supervised learning neural network. The search is performed through an optimization technique such as varPSO, considered a metaheuristic based on particles clusters of variable population. Each individual represents a possible solution to the problem. The proposed method uses a voting criterion, which affects the particle’s speed. This method is benchmarked against PART and C4.5, on 12 databases of the UCI repository and three databases of financial institutions from Ecuador. The results obtained were satisfactory.

Año de publicación:

2020

Keywords:

  • varPSO
  • Classification rules
  • Particle Swarm Optimization
  • fuzzy rules
  • Data Mining

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Inteligencia artificial
  • Lógica difusa
  • Optimización matemática

Áreas temáticas:

  • Métodos informáticos especiales
  • Programación informática, programas, datos, seguridad
  • Funcionamiento de bibliotecas y archivos