Face Gesture Recognition Using Deep-Learning Models
Abstract:
This work compares face gesture recognition methods based on deep learning convolutional neural network (DCNN) architectures named DCNN1, DCNN2, DCNN3, DCNN4, and DCNN+Autoencoder, that maximize the classification performance on single and mixing datasets. We validated the proposed architectures on three different databases: Jaffe, CK+, and the combination of both databases (Jaffe CK+) over a five-fold cross-validation strategy. The DCNN4, DCNN2, and DCNN+Autoencoder models achieved best performance mean accuracy scores of 95%, 94%, and 96% for the Jaffe, CK+, and Jaffe CK+ databases, respectively. Moreover, according to the cross-entropy loss function, the selected models did not incur overfitting.
Año de publicación:
2021
Keywords:
- Artificial Intelligence
- face emotion recognition
- deep-learning models
- Face images
- Face gesture classification
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Ciencias de la computación