Face Gesture Recognition Using Deep-Learning Models


Abstract:

This work compares face gesture recognition methods based on deep learning convolutional neural network (DCNN) architectures named DCNN1, DCNN2, DCNN3, DCNN4, and DCNN+Autoencoder, that maximize the classification performance on single and mixing datasets. We validated the proposed architectures on three different databases: Jaffe, CK+, and the combination of both databases (Jaffe CK+) over a five-fold cross-validation strategy. The DCNN4, DCNN2, and DCNN+Autoencoder models achieved best performance mean accuracy scores of 95%, 94%, and 96% for the Jaffe, CK+, and Jaffe CK+ databases, respectively. Moreover, according to the cross-entropy loss function, the selected models did not incur overfitting.

Año de publicación:

2021

Keywords:

  • Artificial Intelligence
  • face emotion recognition
  • deep-learning models
  • Face images
  • Face gesture classification

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Ciencias de la computación