Anisotropy of spatiotemporal decorrelation in electrohydrodynamic turbulence
Abstract:
Nonlinear straining and random sweeping spatiotemporal decorrelation properties, originally introduced as the main processes for turbulent fluctuations decorrelation in usual fluid flows, have been observed experimentally in anisotropic electroconvective turbulence generated in a nematic liquid crystal under the action of an external oscillating electric field. A transition between both processes occurs when the instability is driven toward states of increasing complexity, thus showing that decorrelation mechanisms in turbulent media are more universal than naively expected. A model for both decorrelation mechanisms is introduced, its comparison with experimental results providing an estimate of the characteristic sweeping velocity. © 2011 American Physical Society.
Año de publicación:
2011
Keywords:
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Dinámica de fluidos
- Dinámica de fluidos
Áreas temáticas:
- Mecánica de fluidos