Anonymizing Personal Images Using Generative Adversarial Networks
Abstract:
This paper introduces a first approach on using Generative Adversarial Networks (GANs) for the generation of fake images, with the objective of anonymizing patients information in the health sector. This is intended to create valuable images that can be used both, in educational and research areas, while avoiding the risk of a sensitive data leakage. For this purpose, firstly a thorough research on GAN’s state of the art and available databases has been developed. The outcome of the research is a GAN system prototype adapted to generate personal images that imitates provided samples. The performance of this prototype has been checked and satisfactory results have been obtained. Moreover, a novel research pathway has been opened so further research can be developed.
Año de publicación:
2020
Keywords:
- Image generation
- GaN
- Anonymization
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Inteligencia artificial
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales