Fans are cycle-antimagic
Abstract:
A simple graph G = (V, E) admits an H-covering if every edge in E belongs at least to one subgraph of G isomorphic to a given graph H. Then the graph G admitting an H-covering is (a, d)-H-antimagic if there exists a bijection f : V ∪ E → {1, 2, …, |V | + |E|} such that, for all∑ subgraphs H′ of G isomorphic to H, the H′ -weights, wtf (H′) =v∈V(H′) f(v) +∑e∈E(H ′) f(e), form an arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. This paper is devoted to studying the existence of super (a, d)-H-antimagic labelings for fans when subgraphs H are cycles.
Año de publicación:
2017
Keywords:
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
Áreas temáticas:
- El libro