Faster and More Accurate Geometrical-Optics Optical Force Calculation Using Neural Networks


Abstract:

Optical forces are often calculated by discretizing the trapping light beam into a set of rays and using geometrical optics to compute the exchange of momentum. However, the number of rays sets a trade-off between calculation speed and accuracy. Here, we show that using neural networks permits overcoming this limitation, obtaining not only faster but also more accurate simulations. We demonstrate this using an optically trapped spherical particle for which we obtain an analytical solution to use as ground truth. Then, we take advantage of the acceleration provided by neural networks to study the dynamics of ellipsoidal particles in a double trap, which would be computationally impossible otherwise.

Año de publicación:

2023

Keywords:

  • ellipsoids
  • optical forces
  • Machine learning
  • Kramer’s rate
  • Optical tweezers

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Fibra óptica

Áreas temáticas:

  • Miscelánea
  • Física aplicada
  • Métodos informáticos especiales